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Abstract

In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for cal-

culating electrostatic interactions due to the operation counts. However when applied to small particle systems and

taken to many processors it has a high demand for interprocessor communication. In a distributed memory environ-

ment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm

that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and

determinism in the equations of motion. The method avoids contention in the communication subsystem making it fea-

sible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of

multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared

with optimized Ewald methods.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction and motivation

The fast multipole method (FMM) was introduced by Greengard and Rokhlin [1] over a decade ago.

Since then many performance improvements were incorporated into FMM. Diagonalization of the trans-

lation operators for harmonic functions replaced costly convolution of O(p4) complexity with an element-

wise product of O(p2) complexity [2–5] (where p is the number of terms in multipole expansion). Careful
error analysis [6] lead to the idea of spherically shaped interaction regions with super-blocks [7]. These tech-

niques brought at least an order of magnitude improvement in the performance of FMM. At the same time,
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introduction of the technique of macroscopic expansion (ME) in a natural way extended applicability of

FMM to systems with periodic boundary conditions [8]. The FMM became a clear alternative to Ewald

summation based methods with a break-even point in serial mode of greater than 10 K atoms. Since its first

appearance, parallelization of FMM has been an on-going effort [9–11]. Here we concentrate on a commu-

nications problem which can arise in any grid topology but is an accute problem for a switched network
system.
2. Fast multiple method theory

Below, we provide a brief introduction to FMM techniques. The interested reader is refered to the

literature for a more complete derivation and discussion [1–11].

2.1. Serial algorithm

The FMM utilizes hierarchical spatial decomposition of the simulation box into a number of levels

organized in an octal tree. Each consecutive level refines its predecessor by subdividing each cell (parent)

into eight smaller cells (children). The cells on the most refined (leaf) level house the particles subject to

an electrostatic force calculation. The algorithm proceeds in the following steps (refer to Fig. 1 for graphical

representation of steps 2–4):

(1) Multipole expansion calculation – each leaf cell calculates multipole expansion based on positions and

charges of particles enclosed in that cell.

(2) Upward pass – each parent cell accumulates multipole expansions of its children by means of multipole

to multipole (M2M) translation.

(3) Well separated cell interactions – cells on each level accumulate multipole expansions of well separated

cells into their local expansions by means of multipole to local (M2L) translation.

(4) Downward pass – each parent cell distributes its local expansion to its children by means of local to

local (L2L) translation.
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Fig. 1. Multipole part of FMM with upward pass, well separated cells interactions and downward pass.
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(5) Local expansion evaluation – each cell calculates for each particle the contribution to force and poten-

tial from the local expansion.

(6) Direct particle to particle calculation – each cell calculates for each particle the contribution to force

and potential from particles in nearby cells.

Steps 1–5 are referred to as the multipole calculations; step 6 is referred to as the direct calculations. Step

3, well separated cell interactions, is the most costly operation in the multipole part. Since the M2L trans-

lation is a convolution, one of the methods to improve its performance is to replace it with an element-wise

product in Fourier space (Fig. 2). We utilized the method proposed by Elliott and Board [3]. In the serial

algorithm step 3 is preceded by fast Fourier transform (FFT) of the multipole expansions and followed by

inverse FFT of the accumulated local expansions. This technique results in a performance improvement of

the M2L translation of about four times. Although a newer technique exists [4,5], it involves considerably

more cumbersome mathematical apparatus.
We also use the speedup mechanism of spherically shaped interaction regions with super-blocks (also

called parental conversion) and flexible separation criterion [7]. In this solution the interaction region of

a cell has the corners cut off. Also a number of interactions with cells on the same level are replaced with

interactions with their parents. For typical separation criterion of 2 cells this technique decreases the size of

the multipole interaction region from 875 to 315 cells and the size of the direct interaction region from 125

to 93 cells, with little impact on the numerical accuracy.

To implement periodic boundary conditions we utilized the ME [8]. In non-periodic FMM the tree is

build from the root down by subdividing the domain. Analogously in ME another tree is build from the
root up by combining periodic images of cells into higher levels of aggregate cells. ME converges to a prop-

erly implemented Ewald summation (with dipole correction).

2.2. Parallel algorithm

For parallel execution, cells on all levels are spanned with a recursive Hilbert space-filling curve [12] and

approximately even pieces of the curve are assigned to each processor. The cells assigned to a processor in

this manner are referred to as host cells for that processor. These cells interact with other cells within the
multipole interaction region and direct interaction region, which are assigned to other processors and are

referred to as neighbor cells (Fig. 3). Neighbor cells have to be fetched from their host processors prior to

computation involving these cells. Although much more sophisticated domain partitioning schemes exist

[13,14], Hilbert space-filling curves suffices for all practical purposes.
multipole expansion local expansion
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Fig. 2. FFT acceleration of FMM with convolution in coefficient space replaced with element-wise product in Fourier space.



Fig. 3. Domain partitioning in parallel FMMwith 512 leaf cells mapped to 64 processors. Shaded cells are cells assigned to processor 0

(host cells of processor 0). Not shaded cells are direct neighbors of processor 0 residing on other processors. For clarity of the picture

minimum possible separation of 1 cell was chosen. We may notice the wrap-around effect of periodic boundary conditions.
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One designated processor is responsible for ME calculations. For constant volume systems the cost of

ME is just a few extra M2L translations which is negligible since every processor performs hundreds of

them anyway. For constant pressure systems (non-constant volume) the problem is isomorphic to constant

volume dynamics in the virtual variable space.
3. Problem description

Although FMM is often called an inherently parallel algorithm, its potential parallelism is limited by its

considerable communication requirements. When applied to small systems (below 30 K atoms) the optimal

hierarchical spatial decomposition of FMM is shallow (4 levels) dividing the simulation box into a relatively

small number of cells (512 leaf level cells). With aggressive parallelization the number of cells per processor
(host cells) goes down to just a few. At the same time the number of cells involved in any communication

operation (neighbor cells) stays on the order of a few hundred (Tables 1 and 2).
Table 1

Numbers of host multipole cells and communicated multipole cells per processor for system with periodic boundary conditions, 4 levels

of spatial decomposition and 585 total number of cells

Number of processors Number of host multipole cellsa Number of multipole data communicationsa

1 585 0

2 292 293

4 146 439

8 73 512

16 36 549

32 18 542

64 9 494

a Approximate numbers. The actual numbers will slightly differ from processor to processor.



Table 2

Numbers of host multipole cells and communicated multipole cells per processor for system with periodic boundary conditions, 4 levels

of spatial decomposition and 585 total number of cells

Number of processors Number of host direct cellsa Number of direct data communicationsb

1 512 0

2 256 256

4 128 384

8 64 416

16 32 320

32 16 240

64 8 176

a Exact numbers.
b Approximate numbers. The actual numbers will slightly differ from processor to processor.
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Typically the multipole and the direct part of FMM have the form presented in Fig. 4. In the processing

phase the outermost loop iterates through the host cells and the innermost loop iterates through the neigh-

bors of a particular host cell. With this approach most of communication has to take place before the first

cell can be processed. The reason for this is that interaction regions for host cells overlap significantly. In

fact with just a few cells per processor, the interaction region for a single cell covers approximately half of

the whole interaction region for all host cells.

Naively, with this approach all the communication is initiated at the same time exposing the program to

contention in the communication subsystem in its two major forms of network or switch contention and
end-point contention. The first major type of contention is experienced on distributed systems built of

SMP nodes connected with a switched network. Usually it is a high performance network with low latency

and high bandwidth. However due to switching technology the effective bandwidth per processor decreases

with the number of processors which is antiscaling. The second major type of contention is the end-point

contention which occurs when several processors attempt to communicate with one other processor at the

same time.

We see with the approach displayed in Fig. 4 there may not be enough computation to be placed between

communication initiation and communication completion resulting in idle or wait time. If a multiple time
stepping technique for integration of equations of motion is used the only computations that can be sched-

uled there are interactions between host cells which constitute only a small fraction of all interactions and

therefore CPU time.
Fig. 4. Pseudocode for the contention-prone communication scheme.
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The diagonalization of translation operators, although very beneficial for performance of the sequential

algorithm, introduces new challenges to parallelization of FMM. Data representation in the transformed

space takes up more memory and creates bigger messages than in the coefficient space representation. In

addition, the element-wise product is a very inefficient operation in the sense that a single data element

is used just once. Overall the ratio of communication to computation increases drastically.
Another problem that we have to deal with is the communication library overhead.

From a simple point of view it is convenient to communicate each data set (multipole expansion, direct

particle positions) in a separate message. Such approach also allows one to avoid buffering. However, by

communicating a large number of short messages we are exposed to the overhead of the communication

library calls and latency. This way we may also contribute to network contention by creating a lot of hand-

shaking messages.

At this point it is crucial that the communication subsystem is utilized efficiently and contention is

avoided. Communication systems are an architecture dependence that we will not explore fully in this work.
Here we base this work on an all-to-all connectivity abstraction provided by the MPI communication

model. The underlying architecture common to many available platforms is symmetric multiprocessors

(SMPs) connected with a switched network of fat tree topology.
4. Method

4.1. Inverse processing

Typically in the FMM, step 3, well separated cell interactions, and step 6, direct particle to particle inter-

actions, are organized according to Fig. 4. The outer loop iterates through host cells and the inner loop

iterates through all neighbors of a given host cell. We can make a simple observation that these loops

can be interchanged according to Fig. 5. The outer loop iterates through all neighbors of a given processor

and the inner loop iterates through all host cells a given neighbor interacts with. Fig. 6 demonstrates the

idea of this inversion.

It is important that instead of fetching all neighbors at the same time, before steps 3 and 6, they can be
fetched one by one throughout steps 3 and 6 with communication taking place in the background of pro-

ceeding computation. This is analogous to a prefetch operation. By communicating a single multipole or

direct neighbor at a time, we spread the communication throughout the whole computation phase without

loss of synchronization and therefore determinism in the equations of motion.

4.2. Processing scheduling

In order not to loose determinism of computation each processor pulls the neighbors from other proc-
essors in an apriori order. It is easy however to create the situation where all processors fetch neighbors

data from the same host processor at the same time. In such case the host processor becomes the commu-

nication bottleneck (Fig. 7(a)).

There is no need however to come up with complicated scheme. A simple solution is to employ circular

neighbor processing (i.e. modulo number of processors) where processor n fetches and processes neighbors

data in turn from processors n + i mod no_processors (i = 0, . . ., no_processors � 1) (Fig. 7(b)).

As one quality measure of this computation scheduling scheme we consider the percentage of time when

more than one processor processes the same neighbor cell. With our circular assignment this time stays on
the order of 10% of the total computation time and no adverse effects of the ‘‘conflicts’’ on the communi-

cation are noticed.



Fig. 5. Simplified pseudocode for the contention-free communication scheme which distributes the communication throughout the

computation.

host cells host cells

neighbor cells neighbor cells

multipole or direct
interaction

multipole or direct
interaction
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Fig. 6. (a) Classic FMM – each host cell in turn processes all its neighbors. (b) Inverse processing – each neighbor in turn passes its

contribution to all host cells.
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This scheme can be trivially implemented by sorting the neighbor cells according to their owner number

and shifting the list. The advantage of this simple scheme is that all neighbors from a single processor are

processed in a continuous manner and the resulting messages can easily be aggregated into bigger ones, or

even a single big message. The message size can then be a target of optimization to take advantage of band-

width and switch contention issues given the amount of time for the overlapping computation.



MESSAGE

TIME

processor 0
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Fig. 7. (a) Worst case scheduling – all processors pull neighbors data from other processors in the same order. (b) Circular scheduling –

processor n pulls neighbors data from processor n + 1, n + 2, . . ., N, 0, 1, . . ., n�1, where N is the total number of processors.

738 J. Kurzak, B.M. Pettitt / Journal of Computational Physics 203 (2005) 731–743
4.3. Message aggregation

Communicating small messages can be very inefficient. If we send each data set in a separate message we

may suffer considerable overhead. We can aggregate data sets (multipole expansions, direct particle data)

into bigger messages. This strategy works up to a point.

With increasing number of processors used, eventually we will be limited by the decreasing amount of

information exchanged between each pair of processors. On the other hand, with a small number of proc-

essors maximum possible aggregation will create huge messages and expose us to the same contention phe-

nomena that we are trying to avoid. As opposed to aggregation we will have to chop the data into smaller

portions.
The right message size is a matter of architecture and will depend on the computer system and message

passing library implementation. Our experience shows that on most large scale parallel systems the message

size in the range between 20 and 50 kB gives good results. This corresponds to 8–24 multipole expansions in

a single message. This can be retuned for a given platform.

4.4. Side effect – memory savings

As discussed in more detail in the following section for the multipole part, we have decided to commu-
nicate in coefficient space and perform FFTs on the receiving processor. In such a case there is a positive

side effect of this communication scheme. We notice that once a multipole expansion in Fourier space is

passed to all the host cells, we can reuse the memory it occupies. Because we process multipole expansions

of the neighbor cells sequentially, we only need one multipole matrix in Fourier space for all the neighbors.

Fig. 8 compares the amount of memory required for multipole expansions by a single processor with and

without using this technique.

Potentially the same could apply to multipole matrices of the neighbors in coefficient space. However it is

convenient to keep the coefficient space matrices of the neighbors due to message aggregation and the fact
that more than one communication may be in progress at a time. One may still wish to consider using

a-few-multipole-expansions-wide buffer instead of allocating space for the entire multipole neighborhood.

This way we could potentially limit memory allocated for multipole expansions to the host cells.

These memory savings do not have as big impact as might be expected because of other memory require-

ments of FMM. Nevertheless superlinear speedups were observed on some machines with somewhat limited

memory systems.



(b)

(a)

Fig. 8. Memory requirements per processor for storage of multipole expansions with: (a) memory allocated for multipole expansions

in coefficient space and Fourier space for host cells and neighbor cells, (b) memory allocated for multipole expansions in coefficient

space and Fourier space for host cells and for multipole expansion in coefficient space only for the neighbor cells.
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5. Performance results and discussion

We present results which reflects our experiences with a system of around 13 K atoms 4 levels of spatial

decomposition, expansion size of 16 and separation criterion of 2 cells. With the technique of spherical
interaction regions and super-blocks this results in a multipole neighborhood size of 315 cells and direct

neighborhood size of 93 cells. It is an example of a small system of practical interest to us that significantly

benefits from FMM. Also a system of that size allows us to do aggressive parallelization of FMM and

investigate its scalability bottlenecks without using many hundreds of processors.

All results presented here were collected on the PCS Compaq Alphaserver ES45 system with SMP nodes

of 4 Alpha EV6.8CB processors and a Quadrics network connecting the nodes. The results show perform-

ance for a system of 13 K atoms, 4 levels of spatial decomposition, expansion size of 16 and separation

criterion of 2 cells.
Fig. 9 shows execution timeline for step 3, well separated cells interactions, for the above mentioned sys-

tem on 8 processors. Fig. 10 presents performance results for the multipole part. We can see rapid perform-

ance degradation of the original algorithm (Fig. 4) with growing number of processors. Up to 16 processors

our algorithm (Fig. 5) more efficiently hides the communication. However starting at 32 and more strongly

at 64 processors the communication is of such volume that it cannot be handled anyway. To decrease the

volume of communication we have decided to communicate multipole expansions in coefficient space

instead of Fourier space and perform FFTs on the receiving processor. As Fig. 10 shows this way we

are able to achieve much better scalability and the cost of extra FFTs is acceptable. Fig. 11 shows perform-
ance improvements from using the memory-saving technique and from message aggregation. Their effect is

not big, but not insignificant either. Fig. 12 shows results for the direct part.
6. Implementation remarks

Building the inverted interaction list is not completely trivial. Because of periodic boundary conditions

and depending on the cell separation criterion, the host cell may interact with the original neighbor cell as
well as with a number of its periodic images. For the typical separation of 2 cells and the number of levels
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processor 0
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processor 2

processor 3
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processor 5

processor 6

processor 7

MESSAGE

TIME

Fig. 9. Execution timeline of the multipole part of FMM with contention-free communication scheme (4 levels of spatial

decomposition; message aggregation with message size of approximately 80 kB).

(a)

(b)

(c)
(d)

Fig. 10. Parallel efficiency relative to a single processor for the multipole part: (a) contention-prone scheme, Fourier space; (b)

contention-free scheme, Fourier space; (c) contention-free scheme, coefficient space; (d) contention-free scheme, coefficient space, with

the overhead of the redundant FFTs subtracted.
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(a)
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Fig. 11. Parallel efficiency relative to a single processor for the contention-free scheme for the multipole part with communication in

coefficient space: (a) no memory saving, no aggregation; (b) memory saving, no aggregation; (c) memory saving, aggregation with

maximum message size of 8 multipole expansions, what equals exactly 17 kB.

(a)

(b)

Fig. 12. Parallel efficiency relative to a single processor for the direct part: (a) contention-prone scheme; (b) contention-free scheme (no

message aggregation).

J. Kurzak, B.M. Pettitt / Journal of Computational Physics 203 (2005) 731–743 741
greater than 3 this phenomenon will not occur for direct interactions. Also with cell separation of 2 and

number of levels greater than 4 it will not occur for leaf-level multipole interactions. However it will always

occur on higher levels of multipole interactions.

Using aggregation the sender will send the same cell data to many other processors, in fact, to each one
in different configurations with other cells. It is impossible to send an aggregate message directly from a

continuous memory block. However sending aggregate messages can be conveniently coded using the

MPI mechanism of general data types.
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Nevertheless, on the receiving processor the cells are always received in the same order, so we can allocate

memory in such a way that the whole aggregated message will be received ‘‘in place’’ (which is the case in our

implementation). The problem is in general irregular. We must take full advantage of all regularities. To this

end it is essential that the communication scheme is coded using non-blocking persistent communication calls.
7. Conclusion

We have presented a simple idea that allows one to use the FMM more efficiently for smaller systems on

more processors and also promises much better speedups for larger systems. Thanks to a few simple obser-

vations communication may proceed almost seamlessly in parallel with computation. More time is availa-

ble for communication and contention is effectively prevented. The multipole and the direct part of FMM

can enclose their own communication needs and be conveniently separated for multiple time stepping. The
scheme has proved to be very robust on a number of different architectures. We will consider other archi-

tectures and problem scaling in future work.

The new communication scheme allows us to have just a few cells per processor which creates a new load

balancing challenge. The total number of cells that participate in the multipole part is a sum of cells on all

levels, but only the leaf cells participate in the direct part. If all calculations associated with one cell are

assigned to a single processor we cannot balance the multipole calculations and the direct calculations at

the same time and we are going to suffer high load imbalance even for uniform particle distributions. We also

notice that the computational load per cell in the multipole part is constant, when the load in the direct part is
strictly dependent on the particle distribution. In future we plan to load balance the multipole part and the

direct part separately which also addresses the problem of load balancing whenmultiple time stepping is used.

We find that the performance of the FFT affects not only our serial performance, but also directly affects

scalability and parallel efficiency of our algorithm due to the fact that we transmit data in coefficient space

and perform redundant FFTs on the receiving side. There are efficient algorithms for performing non-

power of two FFTs in the range of our interest (8–32) and more efficient algorithms to perform 2 dimen-

sional FFT than to perform 1 dimensional FFT by rows and ten by columns [15,16]. Also we can take

advantage of the fact that the multipole expansion has the form a triangular matrix. Finally we can try
to utilize schemes that attempt to dynamically adapt to particular architecture [17]. There are adaptable

library technologies which offer some of these features but not all. The FMM routine will usually be used

as a library invoked from MD packages. If such code is data parallel or uses different spatial domain

decomposition than the FMM presented here, the design of an efficient interface may become non-trivial.
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